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1. Introduction   
 
Features are extractable measurements [ 1-3 ] from a sample image summarizing the 
information content in an image and in the process providing an essential tool in image 
understanding. In particular, they are useful for image classification into pre-defined 
classes or grouping a set of  image samples (also called clustering) into clusters with 
similar within-cluster characteristics as defined by such features. At the lowest level, 
features may be the intensity levels of a pixel in an image. The intensity levels of the 
pixels in an image may be derived from a variety of sources. For example, it can be the 
temperature measurement (using an infra-red camera) of the area representing the pixel 
or the X-ray attenuation in a given volume element of a 3-d image or it may even 
represent the dielectric differential in a given volume element obtained from an MIR 
image. At a higher level, geometric descriptors of objects of interest in a scene may also 
be considered as features in the image. Examples of such features are: area, perimeter, 
aspect ratio and  other shape features, or topological features like the number of 
connected components, the Euler number ( the number of connected components less the 
number of ‘holes’), etc. Occupying an intermediate level in the feature hierarchy are 
texture features which are typically derived from a group of pixels often in a suitably 
defined neighborhood of a pixel. These texture features are useful not only in 
classification but also in the segmentation of an image into different objects/regions of 
interest.  
     At the present state of our investigation, we are engaged in the task of finding a set of 
features associated with  an object under inspection  ( typically a piece of luggage or a 
brief case) that will enable us to detect and characterize an explosive inside, when 
present. Our tool of inspection is an X-Ray device with provisions for  computed 
tomography (CT) that generate one or more (depending on the number of energy levels 
used) digitized 3-dimensional attenuation images with a voxel resolution of the order of 
one quarter of a milimeter. In the task of feature extraction and subsequent selection of an 
appropriate subset thereof, several important factors need to be considered. Foremost 
among them are: 
1. Definition of the sampling unit from which the features will be extracted for the 
purpose of detection/ identification of the explosives. 
 



2. The choice of features ( given the sampling unit) to be extracted that can be used to  
signal the existence / identity of the explosive.  
 
3. Robustness of the computed features under different inspection conditions.  
 
To attain robustness, invariance under the transformations of translation, scaling, rotation 
and change of orientation is highly desirable. 
 
4. The computational costs in the process of feature extraction, selection and their use in 
explosive detection/ identification  
 
     In the search for extractable features, we have done a thorough literature survey with 
the above factors in mind and come out with a list of features that could possibly help us 
in meeting our objective. We are assuming that features will be based on sampling units 
that are single CT slices of the target. This may however change when appropriate 
modifications should be made to the feature extraction process. We indicate below some 
of the major types of features in 2- or 3-dimensional images that have been used in the 
literature on application of pattern recognition (PR) techniques in image understanding   
[ 3, 4 ] and are possibly pertinent to our study. In the following paragraph, we briefly 
indicate the motivation that guided us in the choice of these features, and identify the 
nature of the constraints.  
     The principal feature types derivable from an image will be discussed in section 2. 
Once the features are extracted, one must select a subset of this feature set that will retain 
the most useful information and remove any redundant and irrelevant information that 
may have a detrimental effect on the classifier performance. This is discussed in section 
3.  Section 4 provides a brief summary. 
 
2. Feature Types. 
 
Depending on their origin, features can be broadly divided into the following categories: 
 

(a) Features in the spatial domain 
(b) Textural Features 
(c) Features in the transform domain 
(d) Shape Features 

 
     Of these, the shape features are unlikely to play a significant role in the specific 
explosive detection task we will be involved with. Here we are trying to detect/identify 
explosive materials which are more or less homogeneous and do not have any defined 
shape. The shape of the container is irrelevant for our purpose although this may change 
in any specific circumstance. We shall briefly elaborate the other three in the following.  
 
Spatial domain features.  
 
     These are perhaps the most well understood and widely used features to be found in 
the pattern recognition (PR) literature. These include (i) the amplitude ( or spectral) 
features  and the (ii) histogram features. 



    The amplitude features include entities like, reflectivity, IR temperatures obtained 
from a hyperspectral camera,  RGB color components, X-ray attenuation at different 
energy levels, the dielectric differential measured by a microwave impulse radar etc.  
These refer  
directly to the physical domain from which they were created. Histogram features on the 
other hand are derived from the frequency distribution of the amplitudes mentioned 
above. Typically, they include quantities like the statistical moments, the entropy and 
other statistical parameters associated with the distribution [ 3 ]. The histogram features 
and the invariant moments are listed in Appendix 1. 
 
     In the context of statistical moments it may be important to consider what is known as 
invariant moments such as Zernike moments [ 4, 5 ]  which are invariant under rotations, 
scale transformations and translations (RST). Fast computation algorithms for Zernike 
moments are presented in [ 4 ] and  [ 5 ] indicates that these may be made ‘illumination 
invariant’ as well.   
 
Textural Features. Texture is often interpreted in the literature as a set of statistical 
measures of the spatial  distribution of gray levels in an image. Here it is assumed that 
texture information is contained in the average spatial relationships that gray levels have 
with one another [ 6, 7 ]. Within this category there are several sub-categories that have 
been found useful. These are based on: Gray Level Co-occurrence Matrix ( GLCM), Sum 
and Difference Histogram ( SADH) and , Gray Level Difference Vector ( GLDV). In the 
following we briefly describe each of these [ 6-11 ]. 
 
GLCM. The gray-level co-occurrence matrix method assumes that textural information 
is characterized by a set of co-occurrence matrices Pd  (i, j) where the (i, j) th element is 
the relative frequency with which two pixels with gray values i and j respectively and 
separated at a vector distance d, occur in the image. [ 6, 7 ]  
 
SADH. Unser [ 10 ] proposed the sum and difference histogram method in which the 
second order probability function of a co-occurrence matrix is replaced by estimates of 
the first order probability functions along the principal axes of the co-occurrence matrix. 
Chen et al. [ 11 ] showed that the SADH method produced classification accuracies 
equivalent to those obtained using the GLCM method but with significant savings in 
computing resources.  Appendix 2  provides the computational formulas for these 
features. 
 
GLDV. The gray level difference vector [ 11 ] approach is based on the absolute 
differences between pairs of gray levels I and J found at a vector distance d apart. The 
difference-vector probability density function Pd (m) is defined for m = | I - J | , where I 
and J are the corresponding gray levels, and is obtained by normalizing the gray-level 
frequencies of occurrence by the total frequencies. These textural measures are computed 
in Appendix 3.  
 
 
 
 



Features in the transform domain. 
 
     Frequency domain information in an image is contained in image transforms such as 
Fourier or Gabor. Fourier transform features are selected by computing the total power 
spectrum in  annular rings, wedge-shaped sectors or strips (horizontal or vertical). Of 
these, the first measures the coarseness ( fineness) of the texture and the second measures 
the angular sensitivity [ 6 ]. Other power spectrum measures have been defined in [ 11, 
12].  These features, particularly the last two appear to be of limited value in the context 
of  explosive detection since explosives or simulants are unlikely to possess texture that 
is periodic or directional in nature.  
 
Extensions to X-Ray CT Images. 
 
     Much of the above discussion extends in a straightforward manner to the case of  3-
dimensional images such as digitized CT images although in this case, the computational 
complexity is enhanced by at least an order of magnitude. It should be noted that special 
care must be taken in using the textural features indicated above where reference to a 
vector difference has been made. Typically, for the sake of simplicity, an implicit 
assumption of isotropy is made in textural feature computation of  2-d images. This is 
much less likely to be valid for CT images in general because the vertical resolution in a 
CT image is frequently not  the same as that in the two orthogonal horizontal directions. 
However this problem can be averted when our sampling unit is a slice or an extracted 
region from a slice rather than an entire volume or in the case of a 3-dimensional 
sampling unit, the spatial resolutions along the three axes are the same. In all other CT 
images, the features that use vector separation of pixels, the question of isotropy must be 
addressed. Features derived in the transform domain are extended readily to the 3-d case 
albeit at the expense of additional computational complexity. 
 
3. Feature subset selection 
  
     It is well known from statistical decision theory that probability of classification error 
decreases when additional measurements (features) are taken into consideration. This is 
true only for infinite sample sets for which the estimation errors for the system 
parameters can be ignored. In practice however, only finite training sets are available for 
the purpose of  supervised clsssification and the estimation errors are no longer 
negligible. Due to these errors, the system can be so finely tuned to the training set that it 
lacks generalization capability. Since the number of parameters and the associated 
estimation errors increase rapidly with dimension, it may be advantageous to sacrifice 
some useful information in order to keep the number of these parameters to a minimum. 
     The criterion function used to assess the discriminatory power of the individual 
feature set is the overall probabilistic distance measure between classes to be 
discriminated. This measure uses the complete information about the probabilistic 
structure of classes in a classification  procedure. This information is given in terms of 
the class conditional probability density functions and the prior class probabilities. One 
such measure of class separability that is frequently applied in practice is based on the 
overall Bhattacharya distance between several multivariate populations [ 13 ]. This 
measure C b is given by the expression:

 



                                                          

 Cb= J B(i, j ),
j =i+1

N
∑

i =1

N
∑

where N is the number of classes and JB(i, j)  is the Bhattacharya distance between two 
multivariate populations i and j  given by  

                                                JB(i, j)= μi −μ j( )t Σ−1 μi −μ j( ). 

 
Here, μ i   and μ j  are the feature mean vectors of the two populations and  Σ  the  
( assumed common) covariance matrix of the features for these populations. The prior 
probabilities of the classes have been assumed to be equal above. 
     Several algorithms exist in the literature for feature subset selection preserving their 
class discriminatory power. Among them there is one that is commonly used is called the 
sequential forward selection ( SFS) method. This is suboptimal but efficient and 
generally produces good results[ 12 ]. The algorithm is as follows: 
 

     Let Y  be the set of   features YD = Yi ,i=1,2,...,D{ }. Suppose at the k th 
step, k features have been selected from feature set Xk . Rank the elements 

 of the set of available features YFi − Xk so that   

Cb Xk + F1( )≥ Cb Xk + F2( )≥. ...≥ Cb Xk + F(D− k )( )  
       
Then the feature set Xk +1 = Xk + F1  is created at the (k+1) th step. The 
feature inclusion process is continued until the required number of 
features is chosen. The algorithm is initialized by setting  Xk  to null. 

 
     The main drawback of SFS is that once a feature is included, it cannot be deleted, 
even though it may become redundant or irrelevant due to the features added later on. 
However, in spite of its suboptimality, it is an efficient way of selecting features useful 
for classification and of keeping the computational cost low. 
 
 4. Summary 
 
     A short review of the feature extraction and selection process with the perspective of 
CT data analysis has been presented. The features to be extracted are from the spatial or 
frequency domain with special emphasis on spatial domain features including textural 
features. Computational complexity may be a strong factor influencing the feature 
selection process. The need to pay attention to the possible lack of isotropy in textural 
features for the CT data has been pointed out. Finally, an efficient albeit suboptimal 
process of feature subset selection has been described.                                             
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Appendix 1 



Amplitude Features and Zernike Moments [ Ref. 3-5] 
 

Histogram Features: 
 
Define the relative frequency  f (x) of the pixels with amplitude x  in a given region as                            

f (x) = n(x) / N  
where  n(x)  is the number of pixels with amplitude x  and  N is the total number of 
pixels in the region. The following features are derived from this distribution and are 
commonly in use.  The moments below are defined for i =1,2, ... . Note that for 
attenuation images we have nonnegative pixels only and hence the first and second 
measures below are the same. 
 

The i th moment :                            mi = xi f (x)
x = 0

N −1

∑        

The i th absolute moment :             mi,a = x i f (x)
x=0

N −1

∑  

The i th central moment:                μ i = x − m1( )i
f (x)

x= 0

N −1

∑  

The i th absolute central moment: μ i,a = x − m1
i
f (x)

x=0

N −1

∑  

Entropy:                                        H = f (x)ln2 f (x)
x =0

N −1

∑
2

  bits     

Angular second moment:               asm     1 = f (x)[ ]
x =0

N −1

∑
 
 
Zernike Moments. 
 
Let f(x,y), (x,y) ∈  D be an image with domain D. The Zernike moments of  f are given 
by the projection of f on the Zernike polynomials V  :  mn

 

                   (1)     
Zmn =

n + 1
π

f x, y( )∫∫ Vmn
* x, y( )dxdy

         where the Zernike 
polynomials are (in polar coordinates) given by  

 
(2)                     Vmn ρ, ϑ( )= rmn ρ( )exp jmϑ( ), j = −1    and where 

 

(3)   rmn ρ( ) = −1( )s m − s( )!

s! m + n
2

− s⎛ 
⎝ 
⎜ ⎞ 

⎠ 
⎟ ! m − n

2
− s⎛ 

⎝ 
⎜ ⎞ 

⎠ 
⎟ !s=0

m−n( )/2
∑ ρm−2s  



     In the discrete case, (1) can be rewritten as 
 

(4)                               Zmn =
n +1

π
f ρ,ϑ( )

ϑ
∑

ρ
∑ rmn ρ( )exp − jmϑ( ) 

 
where the sums are taken over the unit circle ρ ≤1,0 ≤ ϑ ≤ 2π . To compute the Zernike 
moments of an image  we map the largest circular subset of the domain of the 
function to the unit circle. The area outside the circle is not considered in the 
computation. 

f x, y( )

 
     The Zernike moments are only rotation invariant. To obtain scale and translation 
invariance, the image is first subjected to a normalization process using its regular first 
and second moment. The rotation invariant features are then extracted from the 
normalized image. 



Appendix 2 
 

The Sum And Difference Histogram Features [ Ref. 11 ] 
 

    From the gray level pair  , two density functions I, J( ) Pd
S K( )  and  Pd

D L( )  are defined 
that are respectively the histograms for the sum   K = I + J   and  the difference L = I − J .  
The histograms are normalized by dividing the individual frequencies by the sum of the 
component frequencies in each. The following provides the computational formulas for 
the SADH features.  The subscripts (superscripts) S, D  hasve been used to denote the 
sum and difference respectively. The subscript d  denoting the vector separation of  I   
and  J  is  understood.  The letters K, L  have also been used as summation indexes. 
 
Mean: 
 

μ S =
S

PK
∑ K( )  

 
Standard deviation: 
 

σ2 =
1
2

K − μ S( )2
K
∑ SP K( ) + 2L DP L( )

L
∑

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 

1 / 2
 

Note that 

σS
2 = K − μS( )

K
∑

2
PS K( )   , 

σD
2 = K − μD( )

K
∑

2
PD K( )  

 
so that  

σ 2 =
1
2

σS
2 + σ D

2( )⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ 

1
2
 

Contrast: 
SCON = L2 PD L( )

L
∑  

Angular Second Moment: 
PS K( )[ ]2

K
∑ PD L( )[ ]2

L
∑  

Correlation: 

COR =
1/ 2 K − μ S( )2

PS K( )− L2 PD L( )
L

∑
K
∑⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

σ 2  

Entropy: 
SENT = − PS K( ) log

K
∑ PS K( )− PD L( ) log

L
∑ PD L( ) 

Local Homogeneity: 



HOM =
PD L( )
1+ L2( )L

∑  

Cluster Shade for Sum: 

SSHAD =
K − μS( )3 PS K( )

σ3
K
∑  

Cluster Prominence for Sum: 

SPROM =
K − μ S( )4

PS K( )
K
∑

σ 4 − 3 



Appendix 3 
Gray Level Difference Vector Features [ Ref. 11 ] 

 
     From the computed probability density function Pd m( ) of the absolute gray level 
difference of two pixels separated by a vector distance d one can compute the following 
features: 
Mean: 

μ d = mPd m( )
m
∑  

Standard Deviation: 

σd = m − μd( )2

m
∑ Pd m( )⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

1/ 2

 

Contrast: 
CONd = m2 Pd m( )

m
∑  

Angular Second Moment: 
ASMd = Pd m( )[ ]2

m
∑  

Entropy: 
ENTd = − Pd m( )log Pd m( )

m
∑  

Local Homogeneity: 

HOMd =
Pd m( )
1 + m2( )m

∑  

Cluster Shade: 

SHADd =
m − μ d( )3 Pd m( )

m
∑⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

σd
3  

Cluster Prominence: 

PROMd =
m − μ d( )4 Pd m( )

m
∑⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

σd
4 − 3 


